

2002

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

General Instructions

- Reading time 5 minutes.
- Working time − 2 hours
- Write using black or blue pen.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.

Total Marks - 84 marks

All questions are of equal value.

Examiner: E. Choy

NOTE: This is a trial paper only and does not necessarily reflect the content or format of the final Higher School Certificate Examination Paper for this subject.

Question 1: [12 Marks]

Marks

- (a) Evaluate $\int_{-2}^{2} \frac{dx}{\sqrt{16-x^2}}$, giving your answer in exact form.
- (b) If $f(x) = e^{x+1}$ find the inverse function $f^{-1}(x)$ and hence show that $f[f^{-1}(x)] = f^{-1}[f(x)] = x$
- (c) Solve the inequality $\frac{4-x}{x} \le 1$
- (d) Find the acute angle between the lines $y = \frac{1}{2}x$ and $x + \sqrt{3}y + 1 = 0$.

 Give your answer in radians correct to two decimal places.
- (e) A(10,1), P(8,5) and B are points on the number plane.

 Point P divides the interval AB externally in the ratio 2: 3.

 Find the coordinates of B.

Question	2:	[12 Marks]
----------	----	------------

Marks

(a) Differentiate $y = \tan^{-1}(\cot x)$ with respect to x.

2

2

- (b) Show that $tan^{-1}(x) = sin^{-1} \left(\frac{x}{\sqrt{1+x^2}}\right)$
- (c) The polynomial $p(x) = ax^3 + bx^2 8x + 3$ has a factor (x-1). When divided by (x+2) the remainder is 15.

Find the values of a and b.

- (d) Find $\frac{d}{dx} \left(\frac{\ln x}{x} \right)$ and hence find the primitive function of $\frac{2 \ln x}{x^2}$
- (e) The word EQUATION contains all five vowels. How many 3 letter "words" consisting of at least 1 vowel and 1 consonant can be made from the letters of EQUATION?

[NB a "word" is ANY arrangement of the letters without any necessary meaning]

(f)

2

PQRS is a cyclic quadrilateral and A is any point on PQ.

A circle through the points P, A and R cuts RS produced at B.

Prove that $AB \parallel SQ$

Question 3: [12 Marks]

Marks

4

(a) Use mathematical induction to show that for all positive integers n

$$\sum_{r=1}^{n} a^{-r} = \frac{a^{n} - 1}{(a-1)a^{n}}$$

(b) The tangent at the point $P(2ap,ap^2)$ on the parabola $x^2 = 4ay$ cuts the y - axis at T.

The line through the focus S parallel to this tangent cuts the directrix at V

M is the midpoint of *TV*.

Find the locus of M as P moves on the parabola.

(c) Show that $f(x) = x - 3 + \ln x$ has a root between x = 1 and x = 3.

If x_1 is this root, using Newton's method, prove that the second approximation is given by

$$x_2 = \frac{x_1(4 - \ln x_1)}{1 + x_1}$$

If $x_1 = 2$, find the value of x_2 giving your answer correct to two decimal places.

Question 4: [12 Marks]

Marks

(a) Tidal flow in a harbour is assumed to be simple harmonic motion and water depth x metres at time t hours is given by

$$x = 20 + A\cos(nt + \alpha)$$

where A, n and α are positive constants.

The depth of water is 12 m at low tide and 28 m at high tide which occurs 7 hours later.

(i) Evaluate A and n.

3

(ii) On a day when low tide occurs at 2.00 am, find the first time period during which the water level is greater than 22 m.

3

(b) The acceleration of a body moving along a straight line is given by

$$\frac{d^2x}{dt^2} = -\frac{24}{x^2}$$

where x is the displacement from the origin after t seconds. When t = 0, the body is 3 metres to the right of the origin with a velocity of 4 m/s.

(i) Show that the velocity, v, of the body in terms of x is given by

2

$$v = \frac{4\sqrt{3}}{\sqrt{x}}$$

(ii) Find an expression for t in terms of x.

2

2

(iii) How long does it take for the body to reach a point 10 m to the right of the origin?

Question 5: [12 Marks]

Marks

A golf ball is hit with a velocity of 5 m/s. It is projected at O, at the bottom of the slope inclined at $\frac{\pi}{4}$ to the horizontal.

The ball is projected at an angle θ to the horizontal, where $\frac{\pi}{4} < \theta < \frac{\pi}{2}$.

The equations of motion are $\ddot{x} = 0$ and $\ddot{y} = -10$

(i) Use calculus to show that the coordinates of the ball's position at time t seconds are given by

$$x = 5t \cos\theta$$
 and $y = -5t^2 + 5t \sin\theta$

(ii) The ball lands at P, where the length of OP = R metres.

Show that $x = y = \frac{R}{\sqrt{2}}$.

- (iii) Show that $R = 5\sqrt{2}(\cos\theta\sin\theta \cos^2\theta)$
- (iv) By differentiation, find the exact value of θ (in radians) for the ball to achieve the maximum distance R.
- (v) Find the maximum value of R.

Question 6: [12 Marks]

Marks

(a)

A, P, B, Q are four points on a circle in a horizontal plane.

$$\angle AQB = \theta$$
 and $\angle PAQ = \frac{\pi}{2}$

(i) Express $\sin \angle ABQ$ in terms of AB, AQ and θ

3

2

(ii) Hence find PQ in terms of AB and θ

_

(iii) Show that

2

$$PQ = \frac{\sqrt{AP^2 + BP^2 + 2AP \times BP \cos \theta}}{\sin \theta}$$

(b) (i) Prove that
$$\frac{\sin 2x}{1-\cos 2x} = \cot x$$

3

(ii) Hence, or otherwise, obtain a value for $\cot 67\frac{1}{2}^{\circ}$

2

4

A small lamp O is placed h m above the ground, where $1 < h \le 5$.

Vertically below the lamp is the centre of a round table of radius $2\ m$ and height $1\ m$.

The lamp casts a shadow ABC of the table on the ground.

Let S m² be the area of the shadow.

(i) Show that
$$S = \frac{4\pi h^2}{(h-1)^2}$$

(ii) If the lamp is lowered vertically at a constant rate of $\frac{1}{8}$ m/s, find the rate of change of S with respect to time when h = 2.

Let V m³ be the volume of the cone *OABC*.

(iii) Show that
$$V = \frac{4\pi h^3}{3(h-1)^2}$$

(iv) Find the minimum value of V as h varies.

Does S attain a minimum when V attains its minimum? Explain your answer.

THIS IS THE END OF THE EXAMINATION

2002
TRIAL HIGHER SCHOOL
CERTIFICATE
EXAMINATION

Mathematics Extension 1

Sample Solutions

$$\int_{-2}^{2} \frac{dx}{\sqrt{16-x^{2}}} = \left[\sin^{-1} \frac{x}{4} \right]_{-2}^{2} \left(\int_{-2}^{2} \frac{dx}{\sqrt{16-x^{2}}} \right]$$

$$= \sin^{-1} \left(\frac{x}{4} \right) - \sin^{-1} \left(\frac{x}{4} \right)$$

$$= \sin^{-1} \left(\frac{x}{4} \right) - \sin^{-1} \left(\frac{x}{4} \right)$$

$$= \frac{\pi}{6} + \frac{\pi}{6} \left(\frac{\pi}{6} \right)$$

$$= \frac{\pi}{3}$$

(b) Let
$$y = e^{x+1}$$

inverse $x = e^{y+1}$
 $\Rightarrow \log_e x = y+1$
ie $y = \log_e x - 1$ (1)
 $f'(x) = \log_e x - 1$

Now
$$f(x) = e^{x+1}$$

$$= f(f'(x)) = e^{f'(x)} + 1$$

$$= e^{\log_e x} - 1 + 1$$

$$= e^{\log_e x}$$

$$= x$$

and

$$f^{-1}(x) = \log_{e} x - 1$$

$$f^{-1}(f(x)) = \log_{e} f(x) - 1 \quad (1)$$

$$= \log_{e} [e^{x+1}] - 1$$

$$= (x+1) \log_{e} e^{-1}$$

$$= x + 1 \quad -1$$

(c)
$$\frac{4-x}{x} \le 1$$

 $x(4-x) \le x^2$
 $4x-2x \le 0$
 $2x-x^2 \le 0$

. ASABABA

(d)
$$tan\theta = \frac{m_1 - m_2}{1 + m_1 m_2}$$

$$= \frac{1}{2} + (-\frac{1}{\sqrt{3}}) \frac{1}{1 + \frac{1}{2}(\frac{1}{\sqrt{5}})} \frac{1}{1 + \frac{1}{2}(\frac{1}{\sqrt{5}})}$$

$$= \frac{\sqrt{3} + 2}{2\sqrt{3} - 1}$$

$$A(x_{1},y_{1}) B(x_{2},y_{2}) m:n$$

$$= \log_{e} \left[e^{\chi+1} \right] - 1 \qquad \text{i. } A(x_{1},y_{1}) B(x_{2},y_{2}) m:n$$

$$= (\chi+1) \log_{e} e^{-1} \left[\frac{m\chi_{2}+n\chi_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n} \right] \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n}, \frac{my_{2}+ny_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n}, \frac{m\chi_{2}+n\chi_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n}, \frac{m\chi_{2}+n\chi_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n} \right) = \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n} \right) \equiv \left(8,5\right) \left(\frac{m\chi_{2}+n\chi_{1}}{m+n} \right) = \left(8,5\right) \left(\frac{m\chi_{$$

(a)
$$y = tan^{-1}(\cot x)$$

$$\frac{dy}{dx} = \frac{1}{1 + (\cot^2 x)} \cdot \frac{d(\cot x)}{dx}$$

$$= \frac{1}{1 + \cot^2 x} \cdot \frac{-1}{\sin^2 x}$$

$$= \frac{-\cot^2 x}{1 + \cot^2 x} = \frac{\cot^2 x}{\cot^2 x}$$

(b) let
$$tan^{-1}x = 0 \Rightarrow tan\theta = x$$

$$sin \theta = \frac{x}{\sqrt{1+x^2}}$$

$$sin \theta = sin^{-1}(\frac{x}{x}) = tan$$

(c)
$$P(x) = ax^3 + bx^2 - 8x + 3$$

 $P(1) = a + b - 8 + 3 = 0$ \Rightarrow
 $A + b = 5 \longrightarrow 0$
 $P(-2) = -8a + 4b + 1b + 3 = 15$ \Rightarrow
 $-8a + 4b = -4 - 2$
 $\Rightarrow a = 2$ $b = 3$

(a)
$$y = \tan^{-1}(\cot x)$$

(d) $\frac{d}{dx}\left(\frac{\ln x}{x}\right) = \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2}$

$$\frac{dy}{dx} = \frac{1}{1 + (\cot^2 x)} \cdot \frac{d(\cot x)}{dx} \quad \frac{d}{dx}\left(\frac{\ln x}{x}\right) = \frac{1 - \ln x}{x^2}$$

$$= \frac{1}{1 + \cot^2 x} \cdot \frac{-1}{\sin^2 x} \quad \frac{d}{dx}\left(\frac{\ln x}{x}\right) + \frac{1}{x^2} = \frac{2 - \ln x}{x^2}$$

$$= \frac{-\cot^2 x}{1 + \cot^2 x} = \frac{\cot^2 x}{\cot^2 x} \quad \text{is } \frac{d}{dx}\left(\frac{\ln x}{x} - \frac{1}{x}\right) = \frac{2 - \ln x}{x^2}$$

(b) Let $\tan^{-1} x = 0 \implies \tan x = x$. Privintine of $\frac{1}{x^2} = \frac{1}{x^2} = \frac{1}{x^2} = \frac{1}{x^2}$

$$\frac{\ln x}{x} - \frac{1}{x} \text{ or } \frac{\ln x - 1}{x^{\frac{2}{5}}}$$
(e) $5C_1 \times 3C_1 \times 6C_1 \times 3! = 5402$

Sinc $\sqrt{1+x^2}$ $\therefore \Omega = \sin^{-1}\left(\frac{x}{\sqrt{1+x^2}}\right) = \tan^{-1}x$ (f) $\int_{\lambda} SRP = S\Omega P$ (angles on some arc SP at Cir. P(1) = a+b-8+3=0 / BRP = BAP (angles on same are BP at cive

=> SQP = BAP lubich are corresp angles formed ky line SQ and BA, transversal QA Since corresp angles equal, lines SQ and BA must be parallel

$$p(n): \sum_{r=1}^{n} a^{r} = \frac{a^{n}-1}{(a-r)a^{n}}$$

$$p(1): Test for n=1$$

$$Lits = \int_{a}^{1} Rits = \frac{a-1}{(a-r)a}$$

$$= \int_{a}^{1} Lits = \int_{a}^{1} Rits = \frac{a-1}{(a-r)a}$$

$$= \int_{a}^{1} Lits = \int_{a}^{1} Rits = \frac{a-1}{(a-r)a}$$

$$= \int_{a}^{1} Lits = \int_{a$$

= RHS

· p(k) -> p(k+1). Direce p(1) is some, $p(1) \rightarrow p(2) \rightarrow p(3) \rightarrow$ By Principle of Mathematical induction, pCn) is the far positive integral n. (b) At P(20p, ap2) dy = dy dp dx $= 2ap \cdot \frac{1}{2a}$: Tgt at P: y-ap = p(n-rap)

At
$$P(2ap,ap^2)$$
 dy = dy dp
 dx dp dx
= $2ap \cdot \frac{1}{2a}$
= P
... Tgt at P : $y-ap^2 = p(n-2ap)$
... $px-y-ap^2 = 0$
This line cuts $y-axis$ when $x=0$
... $y=-ap^2$
... T is $(0,-ap^2)$
The line thro'S $||PT|$ is $y-a=p(n-a)$
 $px-y+a=0$
Thus line cuts $y=-a$
 $px-y+a=0$
 $px-y+a=0$
 $px-y+a=0$
 $px-y+a=0$

For M:
$$\chi = -\frac{2a}{p} + 0$$

$$y = -\frac{a}{p} - 0$$
For locally, eliminate p.
$$y = -a\left(1 + \left(-\frac{a}{n}\right)^{2}\right)$$

$$2y = -a - a \times a^{2}$$

$$2y = -a - a \times a^{2}$$

$$2y = -a\left(1 + \frac{a^{2}}{n}\right)$$

$$y = -\frac{a}{2}\left(1 + \frac{a^{2}}{n}\right)$$

$$y = -\frac{$$

he denain, there must be at least one root.

Newton's mothod state

1(x.)

$$\chi_{2} = \chi_{1} - \frac{J(\chi_{1})}{J(\chi_{1})}$$

$$\frac{J(\chi_{1})}{J(\chi_{1})} = 1 + \frac{J}{2}$$

$$\chi_{2} = \chi_{1} - \frac{J(\chi_{1})}{J(\chi_{1})}$$

$$= \chi_{1} - \frac{\chi_{1} - 3 + J_{1} \chi_{1}}{J(\chi_{1})}$$

$$= \chi_{1} - \frac{\chi_{1} - 3 + J_{1} \chi_{1}}{J(\chi_{1})}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

$$= \chi_{1} (J(\chi_{1}) - \chi_{1}(\chi_{1} - 3 + J_{1}) \chi_{1}$$

Now of
$$\pi_1 = 2$$

$$\chi_2 = \frac{2(4 - \ln 2)}{1 + 2}$$

$$= \frac{8 - 2 \ln 2}{3}$$

$$= 2.20$$

KIAL IISC SHS FXt 1 2002

Queshon 4

$$n = 20 + A \cos(nt + \alpha)$$

Through to Great = $28 - 12$
= 16
 $A = 8$
Period = $2 \times (7 \cosh t)$ Grough to Great
= 2×7

$$\frac{u}{n} = \frac{2\pi}{n}$$

$$\frac{\pi}{7}$$

(b)
$$\frac{d\ln z}{dr} = -\frac{24}{\pi^2}$$
When $t=0, x=3, v=4$

$$\frac{d}{dx}(\frac{1}{2}v^{2}) = -\frac{24}{x^{2}}$$

$$\int \frac{d}{dx}(\frac{1}{2}v^{2})dx = -24\int \frac{dx}{x^{2}} + C$$

$$\frac{1}{2}v^{2} = \frac{24}{x} + C$$

$$v^{2} = \frac{48}{x} + C'$$
When $u = 3$, $v = 4$

$$16 = 16 + C'$$

$$C' = 0$$

$$V^2 = \frac{4.8}{36}$$

Autre 1>0 intrally, We choose fre positive

$$\frac{1}{2} \frac{dt}{dx} = \frac{\sqrt{n}}{4\sqrt{3}}$$

$$\int \frac{dt}{dx} dx = \int \frac{12}{4\sqrt{3}} dx + D$$

$$t = \frac{2^{3/2}}{3/2 \times 1/3} + D$$

$$t = \frac{\alpha \sqrt{n}}{6\sqrt{3}} + D$$

When t=0, 2=3

$$0 = \frac{3\sqrt{3}}{6\sqrt{3}} + D$$

$$0 = 1/2 + D$$

$$t = \frac{2\sqrt{\pi}}{6\sqrt{5}} - \frac{1}{2}$$

$$t = \frac{10\sqrt{10}}{6\sqrt{3}} - \frac{1}{2}$$

(V)
$$R = 5/a \left(\frac{3\pi}{3} \sin^{2} \frac{\pi}{3} - 47^{2} \frac{\pi}{3} \right)$$

$$= 5/a \left(\frac{1}{2} - \frac{1}{2} \frac{\pi}{3} \right)$$

$$= 5/a \left(\frac{2}{2} - \frac{1}{2} \frac{\pi}{3} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \frac{\pi}{3} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \frac{\pi}{3} \right)$$

$$= \frac{1}{2} \left(\frac{1}{2} - \frac$$

(7)

(i)

1)
$$S = \pi r^{2}$$

$$\frac{r}{h} = \frac{2}{h-1} \text{ (similar triangles)}$$

$$\therefore r = \frac{2h}{h-1}$$

$$\therefore S = \frac{4\pi h^{2}}{(h-1)^{2}}$$

(ii)

$$\frac{dS}{dt} = \frac{dS}{dh} \times \frac{dh}{dt}$$

$$S = \frac{4\pi h^2}{(h-1)^2}$$

$$\frac{dS}{dh} = \frac{(8\pi h) \times (h-1)^2 - 4\pi h^2 \times 2(h-1)}{(h-1)^4}$$

$$= \frac{8\pi h(h-1)[(h-1)-h]}{(h-1)^4}$$

$$= -\frac{8\pi h}{(h-1)^3}$$

$$\frac{dS}{dt} = -\frac{8\pi h}{(h-1)^3} \times -\frac{1}{8} = \frac{\pi h}{(h-1)^2}$$

$$= 2\pi \text{ m}^2/\text{s when } h = 2$$

(iii)

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \times \frac{4h^2}{(h-1)^2} \times h = \frac{4\pi h^3}{3(h-1)^2}$$

$$V = \frac{4\pi h^3}{3(h-1)^2}$$

$$\frac{dV}{dh} = \frac{3(h-1)^2 \times 12\pi h^2 - 4\pi h^3 \times 6(h-1)}{9(h-1)^4}$$

$$= \frac{12\pi h^2 (h-1) [3(h-1)-2h]}{9(h-1)^4}$$

$$= \frac{4\pi h^2 (h-3)}{9(h-1)^3}$$

Minimum when
$$\frac{dV}{dh} = 0$$

$$\frac{dV}{dh} = \frac{4\pi h^2 (h-3)}{9(h-1)^3} = 0 \implies h = 0,3$$

$$\therefore 1 < h \le 5 \Rightarrow h = 3$$

h	2	3	4
dV	- 1	0	1/8
\overline{dh}			

NB We only need to test $\frac{(h-3)}{(h-1)^3}$ $\therefore \frac{4\pi h^2}{9} > 0$

So there is a *relative* minimum at h = 3

$$V = 9\pi$$

Testing end points h = 5, $V = \frac{125}{12}\pi$

So the minimum value of V is 9π , when h = 3

Note that
$$\frac{dS}{dh} \neq 0$$
 for $1 < h \le 5$

So the minimum value of S will occur when h = 5, so the two minimums don't coincide for the same value of h.