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Question 1: [12 Marks] Marks

2

dx .
(a) Evaluate 7— , glving your answer in exact form. . 2
2 16— XZ
(b) If f(x)=¢™" find the inverse function f~(x) and hence show that 3

7@ @=x

(©) Solve the inequality 2

NN
|
=
IA
e

(d) Find the acute angle between the lines y=4x and x +3 y+1=0. 2
Give your answer in radians correct to two decimal places. .

(e) A(10,1), P(8,5) and B are points on the number plane. 3
Point P divides the interval 4B externally in the ratio 2: 3.

Find the coordinates of B.



Question 2: [12 Marks] Marks

(a) Differentiate y = tan™(cot x) with respect to x. _ 2

(b) Show that tan™'(x)= sin_l[ a ) 2
31 +x°

(c) The polynomial p(x)=ax’ +bx* — 8x+ 3 has a factor (x—1). When 2
divided by (x +2) the remainder is 15.

Find the values of @ and 4.

(d) Find 4 (ll{c—] and hence find the primitive function of 2- lznx 2
dx\ x X
(e) The word EQUATION contains all five vowels. How many 3 letter 2

“words” consisting of at least 1 vowel and 1 consonant can be made
from the letters of EQUATION?

[NB a “word” is ANY arrangement of the letters without any necessary
meaning]

PQRS is a cyclic quadrilateral and 4 is any point on PQ.
A circle through the points £, 4 and R cuts RS produced at B.

Prove that 4B|| SO



Question 3: [12 Marks] : Marks

(a)

®)

(©)

Use mathematical induction to show that for all positive integers n 4

- ., _a-1
Za (a-Dd"

The tangent at the point P(2ap,ap®) on the parabola x* = 4ay cuts the
y-axisat 7.

The line through the focus S parallel to this tangent cuts the directrix at
V.

M is the midpoint of 77.

Find the locus of M as P moves on the parabola.

Show that f(x)=x—-3+Inx hasarootbetweenx=1andx=3. . 4
If x, is this root, using Newton’s methiod, prove that the second
approximation is given by

_x(4-Inx)
- 1+x

If x, =2, find the value of x, giving your answer correct to two
decimal places.



Question 4: [12 Marks] Marks

(a) Tidal flow in a harbour is assumed to be simple harmonic motion and
water depth x metres at time ¢ hours is given by

x =20+ Acos(nt + @)
where 4, n and « are positive constants.

The depth of water is 12 m at low tide and 28 m at high tide which
occurs 7 hours later.

(1) Evaluate 4 and n. ‘ ; 3

(i)  On a day when low tide occurs at 2.00 am, find the first time period 3
during which the water level is greater than 22 m.

(b) The acceleration of a body moving along a straight line is given by
&x_ 28
dr’ x

where x is the displacement from the origin after ¢ seconds.
When = 0, the body is 3 metres to the right of the origin with a

velocity of 4 m/s.
(1)  Show that the velocity, v, of the body in terms of x is given by 2
43
V=—
Vx
(i)  Find an expression for £ in terms of x. - 2

(i1)  How long does it take for the body to reach a point 10 m to the right of 2
the origin?



Question 5: [12 Marks]

@

(i)

(iii)

(iv)

)

y A\

0 ' -

A golf ball 1s hit with a velocity of 5 m/s. 1t is projected at O, at the

bottom of the slope inclined at g to the horizontal.

The ball is projected at an angle 6 to the horizontal, where % <8< g

The equations of motion are x =0 and 3;: -10

Use calculus to show that the coordinates of the ball’s position at time ¢
seconds are given by

x=5tcos® and y=—5¢ +5¢sin@

The ball lands at P, where the length of OP = R metres.

R
Show that x = y=—=
V2

Show that R= S\E (cos@ sin 0 — cos’ 6)

By differentiation, find the exact value of 6 (in radians) for the ballto

achieve the maximum distance R.

Find the maximum value of R.

Marks



Question 6: [12 Marks]

(a)

(b)

€y
(i1)
(iii)

(i)

A, P, B, Q are four points on a circle in a horizontal plane.
/1
ZLAQB=0 and L PAQ= 5

Express sinZ ABQ in terms of AB, AQ and 0

Hence find PQ in terms of AB and 6

Show that
VAP? + BP? + 24P % BP cos8
PO= -
sing@
sin2x
Prove that ————— = cotx
1—-cos2x

Hence, or otherwise, obtain a value for cot67 %

Marks



Question 7: [12 Marks] Marks

A small lamp O is placed 4 m above the ground, where 1< 4 <5.

Vertically below the lamp is the centre of a round table of radius 2 m
and height 1 m. ‘

The lamp casts a shadow ABC of the table on the ground.

Let S m’ be the area of the shadow.

2
(i)  Show that §=—"2"_ 3
(h-1)
(1)  If the lamp is lowered vertically at a constant rate of % /s, find the 4
rate of change of S with respect to time when 4 = 2.
Let ¥ m’ be the volume of the cone O4BC.
3
(ifi) Show that V= —' _ 1
‘ Xhr-1)
(iv)  Find the minimum value of ¥ as # varies. 4

Does S attain a minimum when V attains its minimum? Explain your
answer.

THIS IS THE END OF THE EXAMINATION
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@

(i)

(iii)

S=nr
L. i(sirnilar triangles)
ho h-1
L 2h
-1

_ 4nh’

(h-1)
dt dh dt =

47 h? dt 8

(h-1)
ds _(8zh)x(h—1)* —4zh’ x2(h~1)
dh (h-1)"

_8rh(h-D[(h-1)—h]

B (h-1)"

_ 8zh

(h-1)° ‘

ds 8xh 1 7h
a (-7 8 (h-I)

=27m?/swhenh=2

4R 4rh’

= h=
=1 3(h=1)



(iv)
_ 4rh’
T 3(h-1)
dv _3(h-1)* x12zh* — 4z’ x6(h-1)
dan 9(h-1)*
127k (h=1)[3(h—1) - 2h]
B 9(h-1)*
Ak (h-3)
C9(h-1)

Minimum when — =0
dh

av _ Azhk’(h-3)

3 :O:>h=0,3
dh 9(h-1)
w1<h<5=h=3 NB We only need
A 2 -3 4 to test -(h——?’);
av -1 0 ¥ =D
— 2 )
dh 4”;’ >0

So there is a relative minimum at 2 =3
V=9rx

Testing end points =5, V =27

So the minimum value of V'is 97, when h =3

Notethat%¢0for1<hs5

So the minimum value of S will occur when % = 5, so the two minimums don’t
coincide for the same value of A.



